Next | ToC | Prev

7

Nuclear Workers: Radiation on the Job




While the use of radiation in medicine has led to some unpleasant surprises, its presence in the workplace has served as a sort of early-warning system to the general population. "Since workers are first exposed and most heavily exposed," writes Dr. Irving Selikoff, "the workers give us first indication. Most things that cause cancer in society are discovered in the workplace."[1] Ever since Czech miners began digging for uranium four centuries ago, evidence has been piling up to indicate that radioactivity has been killing and debilitating people who work with it. Unfortunately the nuclear industry and its supporters in government have consistently resisted that conclusion, even to the point of suppressing numerous broad-based studies they themselves commissioned and then quashed when the conclusions went the "wrong" way.

The key point of debate has centered on how much radiation was really considered safe. Since 1898, when Pierre and Marie Curie began working with radium in a run-down shed outside Paris, millions of people have worked in diverse industries that use radioactive materials in such varied applications as the making of false teeth and numerous industrial products, the painting of watch dials, the shooting of X rays, and the building of atomic bombs and power plants.

Because it cannot be smelled, tasted, seen, heard, or felt, early physicists assumed that radiation was not dangerous unless it produced immediate, visible effects, such as skin burns. Soon it began to dawn on those close to the field that there might be other effects, and standards began to come into existence in succeeding years on a hit-and-miss basis. The first exposure standards, set in the 1920s, allowed workers to receive as much as 730 rems per year--146 times the current U.S. limit.[2] By the 1940s it was widely acknowledged that radiation did cause cancer. But the prevailing scientific view at that time was that there was a safe "threshold" of exposure below which radiation caused no harm. If that particular "harmless" dose could be found, then a permanent standard could be set.

While the search for the threshold went on, it became well known that radium-dial painters who had ingested bits of radium in their work were suffering agonizing deaths from cancer. In 1941 a standard that limited radium ingestion was set based on their experience.[3] By 1959 industry-wide concern over genetic damage and other radiation-related disease had grown to the point where an across-the-board limit of five rems per year was set for all radiation-related work. The formal limit persisted through 1981, but various loopholes in the standards allowed a worker to legally receive as much as forty-two rems per year. And in the late 1970s industry and its supporters began a concerted move to raise exposure limitations in the workplace.[4]

Meanwhile, by 1980, EPA estimates put the number of Americans working with radiation at 1.5 million. At least eight federal departments, two independent scientific advisory committees, and fifty states have some authority over worker protection.[5] As an editorial in the prestigious journal Health Physics put it in August 1980: "Policies vary from location to location. Regulations and regulatory guidance are in such a hopeless muddle that it is impossible to derive consistent practices. Thus many exposures . . . go unrecorded or unrecognized."[6]

Perhaps more important for the general public, the debate over what is thought to be a "safe" dose of radiation rages on, with people who work with radiation serving as society's guinea pigs. By the mid-1970s the federal government and the broad mainstream of independent radiation specialists had agreed that it was simply impossible to set a 100 percent safe level of exposure. The extreme vulnerability of children, the potential for genetic damage, and variations in individual susceptibilities made even the tiniest bit of exposure potentially lethal. As the studies of Hewitt, Stewart, and Kneale had shown in England, small doses of X ray had already proven far more dangerous than previously believed.

And now, with billions of dollars invested, radiation and its dangers became the core of yet another debate, this time with the health of workers at center stage, but with serious implications for the well-being of the global community at stake.


1. D. Zinman, B. Wyrick, and B. Hevisi, "Job-Related Diseases Kill 300 a Day," Newsday, February 9, 1977.

2. David M. Scott, "A Review of Radiation Protection Principles and Practices and the Potential for Worker Exposure to Radiation," a research report for the National Institute for Occupational Safety and Health (NIOSH), March 30, 1980, pp. 10-13 (hereafter cited as "Scott/NIOSH Report").

3. Ibid.

4. According to Volume 10 of the Code of Federal Regulations, Part 20 (10 CFR), a radiation worker can receive three rems per quarter or twelve rems total body exposure in a given year using the 5(n-18) age averaging formula. By adding the thirty-rem bone or thyroid dose permitted under these regulations, the forty-two-rem figure is arrived at. In 1977 the International Commission on Radiological Protection (ICRP) issued worker exposure recommendations in their Publication No. 26 (ICRP No. 26, Pergamon Press) which would have the effect of increasing single organ exposures significantly. For example, the current thyroid dose of thirty rems would be raised to fifty rems in cases where radiation is deposited in one organ alone. ICRP No. 26 in terms of regulations would raise twenty-three out of forty-nine maximum permissible concentrations of airborne radioactivity in the workplace --such as strontium 90, which would be increased by a factor of seventeen.

5. Robert Alvarez, "Statement before the House Government Operations Subcommittee on Energy, Environment, and Natural Resources, July 14, 1978" (available from the Environmental Policy Center, 317 Pennsylvania Ave. SE, Washington, D.C. 20003).

6. Ronald Katheren, "What Is Occupational Exposure?" Health Physics, 39, No 2 (August 1980): 141.




The Mancuso Report

At the heart of the conflict sits a quiet, unassuming health-research pioneer named Dr. Thomas Mancuso. A spry man in his late sixties, Mancuso walks daily to an office cluttered with computer printouts at the University of Pittsburgh. The printouts form the basis of Mancuso's research in occupational health, a field he has helped nurture since seventeen years of service as director of the Ohio Department of Industrial Hygiene in the 1940s and 1950s. During those years Mancuso helped write one of the nation's first occupational disease codes, and he pioneered a method of studying long-term health effects based on Social Security data, which has essentially revolutionized occupational cancer research. Given a career award by the National Cancer Institute as one of America's top researchers, Mancuso linked heightened cancer rates to work in the rubber, chemical dye, asbestos, chromate, and beryllium industries.[7]

Because of his unique prestige and unquestioned scientific integrity, Mancuso was approached in 1964 by the Atomic Energy Commission to study the potential health effects of work in their facilities at Oak Ridge, Tennessee; Savannah River, South Carolina; Los Alamos, New Mexico; and Hanford, Washington.

The AEC was then under fire from opponents of bomb testing and, as AEC adviser Brian MacMahon put it, "much of the motivation for starting this study arose from the `political' need for assurance that AEC employees are not suffering harmful effects." Though they knew Mancuso's study would be extensive, AEC administrators expected it to prove nothing. Some referred to it as "Mancuso's folly" and openly viewed it as a public-relations sham.[8]

But what Mancuso actually found turned out to be more than they bargained for. His investigation--which constituted one of the largest and probably the most reliable of all the epidemiological studies on the health effects of radiation--proved conclusively that exposure levels in industry were far too high, and that the health effects of emissions from nuclear power plants and fallout from nuclear bombs may be far worse than suspected. When Mancuso's first results were finally published in 1977, the industry response changed rapidly from bemused tolerance to outright suppression, including attacks on Mancuso's findings and reputation, and an attempt to physically remove the data from his possession.

Trouble had surfaced even before 1977. Mancuso's methods were necessarily slow, but the AEC desperately wanted to have something with which to assure the public their industry was safe. In the early 1970s, after about a decade, the commission was looking for ways to phase Mancuso out. Mancuso, however, continued to resist pressure to force publication of his preliminary findings, essentially because he knew it could take up to thirty years for cancers to surface in affected workers. His data only began in the mid-1940s, and Mancuso wanted to wait before terming any findings "conclusive."[9]

Then, in the summer of 1974, the situation changed abruptly. The problem focused on the massive AEC installation at Hanford, Washington, where a reactor complex--which produced the plutonium for the bomb dropped on Nagasaki--a waste dump, and other nuclear facilities were operating. As one of the oldest and largest nuclear facilities in the world, Hanford was--and is--a keystone to the American nuclear weapons program.

The controversy began there when Dr. Samuel Milham, an epidemiologist with the Washington State Department of Health, noticed a 25 percent cancer excess among Hanford nuclear workers when compared with the rates among the state's nonnuclear workers. Milham also found four cases of multiple myeloma, when less than one would normally be expected.[10] It was the same disease found among GIs who first went into Hiroshima and Nagasaki after the bombings.

When the AEC got wind of Milham's findings, Mancuso's contract officer called on Mancuso to issue a statement attacking Milham and contending that his own figures showed there was no problem at Hanford. Mancuso was stunned. He knew Milham to be a reliable researcher, and he had no intention of publishing any of his own data at that point. His initial findings were proving negative, but he felt that publishing anything then--especially in light of what Milham had found--was "premature."[11]

That, apparently, was intolerable to the AEC. In less than a year Mancuso got word that his funding would be gradually shut off, and that by 1977 he would be compelled to turn over his enormous store of data to the federal government. The 18-month "grace period" was essentially to allow Mancuso time to organize his files, and to ease the political impact of an action the authorities hastened to describe as strictly "administrative."[12]

Meanwhile the AEC commissioned Battelle Northwest, a think tank with extensive Hanford contracts, to reassess Milham's findings. According to AEC records, the study found precisely what the government did not want to hear--"that there is a relationship between cancer as a cause of death and the total dose of external radiation received."[13] Alex Fremling, manager of the Hanford Research Lab, lamented that "the message is clear that Battelle's data suggests that Hanford has a higher proportion of cancer deaths for those under 65 than the U.S." But, Fremling continued, "even more disturbing from our standpoint" was the fact that "the analysis tends to show a much higher incidence of certain types of cancer" even among those exposed to levels of radiation believed to be "safe." Thus, Fremling concluded, "we hoped to get a good answer to the Milham report, and instead it looks like we have confirmed it."[14] The Battelle study was quickly buried.

But Thomas Mancuso persisted. In the wake of the Milham affair he turned to Dr. Alice Stewart, the internationally recognized British X-ray researcher and a member of his advisory committee. With the help of statistician George Kneale, Stewart carefully examined Mancuso's data at their office at England's University of Birmingham. In the summer of 1976 they showed definitively that there were indications of 5 to 7 percent excess in radiation cancer deaths among Hanford workers at exposure levels as much as thirty times below what had been considered safe.[15]

The Mancuso-Stewart-Kneale findings were shattering not only to the industry, but to public perceptions of what might be a safe dose of radiation from reactors, bomb tests, or a nuclear war. As described by the 1980 Encyclopaedia Britannica, the survey had become "the largest study of a normal adult population exposed to low-levels of ionizing radiation" in the world.[16] Because it was a largely homogeneous sample of relatively healthy white males whose exposure and health histories had been carefully recorded, there was little reason to doubt its conclusions. And the study had shown, quite simply, that human beings were up to thirty times more sensitive to radiation-induced cancer than previously believed.

Now the AEC turned the tables on Mancuso. Having demanded that he publish his preliminary findings to attack Milham, the AEC now exerted enormous pressure to keep Mancuso's final statistics out of print. "They were clearly unhappy," Mancuso told us. "They urged us not to publish. . . . My job in their eyes was simply to transfer the data to them."[17]

By the fall of 1977 Mancuso's research funds had run out. In November he published his paper in Health Physics, creating a firestorm of controversy. Though he continued to draw a salary from the University of Pittsburgh, Mancuso had no funds with which to continue his research. Though it was a bare fraction of what was needed, Mancuso began cutting into his personal retirement money to continue working on the Hanford study. Meanwhile the federal government persisted in its attempts to take the data away from him.

But it also had come under public attack for its treatment of Mancuso. Under pressure, Dr. James Liverman, who had been director of the AEC's Division of Biology and Medicine, explained that Mancuso was being fired because of his "imminent retirement" from the University of Pittsburgh. On that basis, he said, the Mancuso study was being moved to the government-controlled Oak Ridge Associated Universities. Liverman failed to note, however, that Mancuso had a full eight years left in his position with the University of Pittsburgh. Liverman arranged for the Hanford portion of the Mancuso study to be handed over to Battelle Laboratories, where the same former AEC official who had tried to use Mancuso to attack the first warning signals of a problem at Hanford would now be in charge of further investigations into the situation at Hanford.[18] Liverman also charged that an early peer review of Mancuso's work had been critical of him, when in fact it had lauded his capabilities and recommended that the study be continued under his control.[19]

By January of 1978 the public furor over Mancuso's findings and other radiation-related issues had led to a congressional investigation and to hearings in front of the House Commerce Subcommittee on Health and the Environment. The hearings marked a major watershed in the controversy over the health effects of radiation, signaling the first major congressional attention given not only the Mancuso report but also the facts of high exposures to the 250,000-plus military personnel used as "guinea pigs" during atomic bomb tests.[20]

In the course of the hearings Congressmen Paul Rogers (D-Fla.) and Tim Lee Carter (D-Tenn.) charged that the justifications for the decision to fire Mancuso were "not supported" and the decision to transfer Mancuso's study to Oak Ridge was "highly questionable at best." The whole process, they said, reflected "serious mismanagement and is of highly questionable legality."[21]

Nonetheless the attacks continued. Mancuso kept the study going with private donations and his retirement money until August of 1979, when labor-union pressure forced the National Institute of Occupational Safety and Health to reinstate the study. But in the spring of 1981 the Reagan administration notified Mancuso his funding would once again be cut off.


7. Thomas F. Mancuso, "Methods of Study of the Relations of Employment and Long-term Illness by Cohort Analysis," American Journal of Public Health, 1959.

8. Thomas F. Mancuso, interview, October 1980; Professor Brian MacMahon, letter to Leonard Sagan, AEC contract officer, November 8, 1967.

9. In a draft memorandum from Sidney Marks, Mancuso's AEC contract officer, dated February 20, 1973, Marks stated that "unless an immediate replacement [for Mancuso] is found, a public charge may be made that the AEC is stopping the program out of fear that positive findings will emerge." Marks continued by adding ". . . overtures to possible candidates must be carried out in a clandestine atmosphere . . ." to phase out the uncooperative Mancuso.

10. Samuel Milham, Jr., "Increased Cancer Mortality Among Male Employees of the Atomic Energy Commission, Hanford Facility, Washington, June 1974," unpublished manuscript.

11. Mancuso interview.

12. U.S. Congress, House Committee on Interstate and Foreign Commerce, Subcommittee on Health and the Environment, Effect of Radiation on Human Health, 95th Cong., 2nd sess., January 24-26, February 8, 9, 14, and 28, 1978, Serial No. 95-179, Vol. 1, p. 523.

13. Draft AEC Memorandum, from Alex Fremling, AEC Director of the Hanford Research Laboratory, July 17, 1975.

14. Ibid.

15. Thomas F. Mancuso, Alice M. Stewart, and George W. Kneale, "Radiation Exposures of Hanford Workers Dying from Cancer and Other Causes," Health Physics Journal 33, No. 5 (November 1977): 369-384; Mancuso, et al., "A Reanalysis of Data Relating to the Hanford Study of the Cancer Risks of Radiation Workers," International Atomic Agency Symposium Proceedings on the Late Biological Effects of Ionizing Radiation, Vienna, Austria, 1978, IAEA-SM-224/510; Stewart, et al., "Hanford IIb, The Hanford Data--a Reply to Recent Criticisms," Ambio 9 (June 1980): 66-73; Kneale, et al., "Hanford III, a Cohort Study of the Cancer Risks from Radiation to Workers at Hanford (1944 to 1977 deaths) by Method of Regression Models in Life-Tables," British Journal of Industrial Medicine (in press), summer 1981; Mancuso, et al., "Hanford IIIb, Delayed Effects of Small Doses of Radiation Delivered at Slow Dose Rates," Proceedings of a Symposium on Industrial Cancers, Cold Spring Harbor, Banberry Center, Long Island, N.Y., March 1981.

16. Karl Z. Morgan, "The Hazards of Low-Level Radiation," Encyclopaedia Britannica, 1980 edition.

17. Mancuso interview.

18. U.S. Representatives Paul Rogers and Tim Lee Carter, letter to James Schlesinger, secretary, Department of Energy, May 4, 1978 (hereafter cited as "Rogers, Carter letter to Schlesinger").

19. Ibid.

20. "Statement of Donald M. Kerr, acting assistant secretary for defense programs, Department of Energy," Effect of Radiation on Human Health, January 26, 1978, pp. 331-404.

21. "Rogers, Carter letter to Schlesinger."




Responses to the Mancuso Report

Mancuso's critics--including his former project manager--have consistently conceded that his data indicate an excess of bone-marrow and pancreatic cancers among the Hanford workers. But the critics contend that a carcinogen other than radiation must be involved.[22]

The prime basis for that contention comes from a government-sponsored investigation into the Japanese casualties at Hiroshima and Nagasaki. According to official interpretations of that study, dose estimates from the Japanese bombings would indicate that similar effects surfacing in the Mancuso data were "impossible" given the reported levels of radiation at Hanford. But the bomb study itself has since come under devastating reevaluation, and it may in fact confirm rather than deny Mancuso's conclusions.[23]

The study was begun in 1950 under the auspices of a high-level U.S. Government group called the Atomic Bomb Casualty Commission (ABCC). Beginning its work a full five years after the bombings, the ABCC was dominated by members of the Atomic Energy Commission. Though the board was originally composed almost entirely of Americans, the Japanese government has recently taken an increasingly important role. Essentially the ABCC undertook to reconstruct the bombings of Hiroshima and Nagasaki through computer models designed to estimate the doses received by local victims and to apply that to what could be learned about their health histories after the bombings. The study has served in part as the basis for the five-rem annual exposure standards in the workplace, and as the pace-setter for calculating all other dose levels for the general public. Moreover, it has been used as the scientific litmus test for all other radiation studies.

Unfortunately the ABCC study has been seriously flawed. Its dose estimates result from computer models built around atomic tests conducted in the U.S.; the blasts at Hiroshima and Nagasaki were not monitored, and the actual doses they delivered are not precisely known. The ABCC study is considered in the scientific community to be a "high-acute dose" study, for the obvious reason that the people of Hiroshima and Nagasaki were hit with a massive "burst" of radiation. But the results of the ABCC study have consistently been applied to long-term exposures of low doses of radiation, which may well be an entirely different type of medical response. The Mancuso study is acknowledged as the largest of the "low-dose" studies because the workers involved were exposed over long periods of time to measured low-level exposures.

The ABCC has also been highly secretive about its data, with access given only to a select group of scientists--leading to the criticism that only those friendly to the nuclear industry have been allowed to use this seminal information. Japanese scientists have also charged that the data have been kept from them and systematically dominated by Americans who might have an interest in discouraging compensation claims from Japanese victims of the bombing.[24] Indeed, in 1957 Dr. John Gofman, a leading atomic scientist and at that time a strong industry supporter, was told outright by a military scientist that data were being manipulated to prepare "for the time when survivors tried to collect compensation."[25]

Additional scientific questions about the study have been raised over the nature of the populations of the two afflicted cities. The systematic analysis of what happened to them did not begin until 1950, and thus there is little base-line data about what occurred in those crucial five years after the bombs were dropped. Nonetheless, for statistical purposes the ABCC began its studies by assuming that the Hiroshima and Nagasaki populations of 1950 could serve as a viable test sample.[26]

But Dr. Alice Stewart has challenged that assumption. Aberrations inflicted among the survivors of the bombings had, she said, created a population that was both atypical and prone to diseases caused by bone-marrow scarring and other effects that might not turn up in the ABCC calculations. After an in-depth independent study she concluded that a more realistic appraisal of the Hiroshima-Nagasaki populations might well reveal that the radiation effects of the bombings were ten times more serious than what the ABCC was saying--and thus the entire issue of what constituted a "safe" radiation dose was very much in doubt. "The A-bomb survivors are a highly abnormal population," Stewart told us in a 1980 interview. "It seems incredible that radiation standards for workers and the general public would be based on A-bomb survivors when we now have data on normal, healthy workers from the Mancuso study."[27]

The flow of new scientific evidence seems to be going Dr. Stewart's way. In August 1981 Iwanami Shoten of Tokyo and Basic Books of New York jointly published Hiroshima and Nagasaki: The Physical, Medical and Social Effects of the Atomic Bombings, the first comprehensive survey of the damage done by the nuclear attacks. Compiled by a team of Japanese scientists and social workers, the massive volume delineated the "irreversible injury" to human cells, tissues, and organs which still plagued bomb victims, causing a rise in deaths from leukemia and on-going suffering from other blood diseases, cataracts, genetic damage, nervous system disorders, and a general loss of disease-resistance. According to the study, which received worldwide attention, the overall toll from the bombs was far more serious than previous surveys had indicated.[28]

Similar revisions with specific focus on radiation damage were already being fiercely debated. In 1980 a key high-level study group--the National Academy of Sciences Advisory Committee on the Biological Effects of Ionizing Radiation (the BEIR committee)--used ABCC data to conclude that workplace cancer risks from radiation had been overestimated by a factor of two. The committee's chairman, Dr. Edward Radford, disagreed, arguing that exposure levels to workers should in fact be tightened by a factor of ten. Nationally known as a leading expert in the radiation field, Radford was subsequently excluded from key final BEIR committee deliberations.

But in early 1981 supporters of relaxed standards in the workplace and elsewhere were given a devastating shock. Researchers at the Lawrence Livermore Laboratory in California and at the Oak Ridge National Laboratory in Tennessee were forced to conclude that the doses received by the people of Hiroshima thirty-five years earlier had been seriously misinterpreted. "Some of the most important data on the effects of nuclear radiation on humans may be wrong," wrote Science magazine. The amount of neutron radiation delivered by the bombs had been grossly overestimated, perhaps by a factor of ten. Thus the people of Hiroshima and Nagasaki may have suffered cancer and other radiation side effects from doses far smaller than previously believed. That meant the radiation itself was far more deadly. "The new findings are far from welcome," one consultant told Science. All the revisions were "moving in the wrong direction" because they now indicated that low doses of radiation could kill far more people than anyone had previously thought possible--the very conclusion to which Thomas Mancuso's work had been pointing since 1977.

The impact of the new findings was hard to overstate. "The implications are far-reaching for health regulation and nuclear power in this country in general," said David Auton, a physicist with the Defense Nuclear Agency. Standards for neutron radiation in particular might have to be tightened by a factor of ten and on crucial jobs, the nuclear industry might have to hire ten times as many people. Exposure levels for people living near nuclear power plants would have to be reevaluated, as would potential casualty statistics for a nuclear war. The new data said Dr. Arthur Upton, former director of the National Cancer Institute, greatly strengthened the argument that there is no "safe" level of exposure to radiation.[29]


22. George Hutchinson, Charles Land, Brian MacMahon, and Seymour Jablon, "Review of Report by Mancuso, Stewart and Kneale of Radiation Exposure of Hanford Workers," Health Physics Journal 37 (August 1979): 207-220; Ethyl S. Gilbert and Sidney Marks, "An Analysis of Mortality of Workers in a Nuclear Facility," Radiation Research 79 (1979): 122-148.

23. "New A-Bomb Studies Alter Radiation Estimates," Science 212 (May 1981) (hereafter cited as "New Studies Alter Estimates").

24. Frank Barnaby, Bulletin of the Atomic Scientists, December 1977, p. 50.

25. John W. Gofman, interview, February 1981.

26. See Gilbert W. Beebe, et al., Life Span Study Report 8, Mortality Experience of Atomic Bomb Survivors, 1950-74, Technical Report TR 1-77, Radiation Effects Research Foundation.

27. Alice M.Stewart, interview, September 1980; Alice M. Stewart, "Delayed Effects of A-Bomb Radiation--a Review of Recent Mortality Rates and Risk Estimates for Five Year Survivors," submitted to the British Journal of Epidemiology, May 1981 (available through the Environmental Policy Institute, 317 Pennsylvania Ave. SE, Washington, D.C. 20003).

28. The Committee for the Compilation of Materials on Damage Caused by the Atomic Bombs in Hiroshima and Nagasaki, translated by Eisei Ishikawa and David L. Swain, Hiroshima and Nagasaki The Physical, Medical and Social Effects of the Atomic Bombings (New York: Basic Books, 1981). See also, Herbert Mitgang, "Study of Atom Bomb Victims Stresses Long-Term Damage," New York Times, August 6, 1981, p. A8.

29. "New Studies Alter Estimates."




Death in the Mines

Though the Mancuso and Hiroshima/Nagasaki studies based their conclusions on data dating to the 1940s, deaths from radiation exposure among workers have occurred for four centuries, since the beginnings of the uranium-mining industry. As early as the sixteenth century, miners in the Erz Mountain region of what is now Czechoslovakia complained of a chest disease they called "mountain sickness." The ore they dug was pitchblende--uranium--which served as a pigment in pottery and lent sparkle to ornaments used by European royalty. The disease it brought caused deep, stabbing pains, difficult breathing, and an early death.

By the 1870s pioneer health researchers had identified the disease as lung cancer. An early epidemiologist named Arnstein recorded a 40 percent cancer death rate among Czech uranium miners. In 1939 a researcher named Peller reported that the lung-cancer death rate among those miners was twenty times higher than that among control subjects in Vienna. J. A. Campbell, an Englishman, found that mice exposed to dust from those mines developed lung tumors at a rate ten times normal.[30]

The source of the problem was radon gas, which is naturally emitted in small quantities from uranium ore. This gas, in turn, decays into heavy isotopes called "radon daughters," including isotopes of polonium, bismuth, and lead. Unlike the gas that carries them, some of these isotopes have extremely long half-lives. They emit dangerous alpha particles; minuscule amounts of them can cause cancer when they are introduced into the body. Underground, the radon gas from uranium ore is trapped long enough for its "daughters" to be deposited as solids in the earth. But when the ore is exposed to air, as it is when mined, the gas escapes. Miners without adequate protection inevitably inhale that gas--and its lethal alpha-emitting "daughters."[31]

Such dangers were already well known in the 1940s and 1950s, when the pressure to build atomic bombs and fuel reactors sent prospectors into the western hills to find uranium. Much of it was discovered on Indian land. Soon hundreds of miners--many of them Native Americans--were at work digging out the radioactive ore.

But precious few of them were warned of any special dangers in the mines. Working conditions were, as one researcher put it, "medieval," probably not significantly better than in the Czech mines of the 1500s. One particular problem arose when mine owners used explosives to loosen ore. "When the blast was made it got all smoky," miner James Bennally told a crew from the New York-based Eleventh Hour Films. "We would enter the mines while the smoke was still in the air and take out the ore. They never told us about protective equipment. We went in in our own clothes." The miners were paid seventy-five cents an hour; they drank water that seeped through the radioactive ore they dug. They were sometimes given masks to wear, but even at that, said Bennally, "we still got dust through the nose. There was a bitterness in it which we breathed and tasted. We were not aware of the grave illness that might occur." The effects, however, were real enough. "Across my rib-cage it is constantly hurting," said Bennally. "The doctors do not tell me what is happening. But I know the hurt is there."[32]

The dust Bennally and his fellow miners breathed was laced with radon. Ventilation systems that had been installed in Czech mines as early as the 1930s, and that were being operated at a relatively low cost in France, were nowhere to be found in the U.S.[33] In fact the National Council on Radiation Protection had recommended mine-worker exposure standards as early as 1941. At that time the Atomic Energy Commission was the sole purchaser of uranium in the U.S. It also operated some of the mines directly. Under federal law it was responsible for working conditions in those mines. And at the end of the 1940s, as the nuclear arms race accelerated demand, the AEC's Office of Raw Materials Operations recommended taking control of exposure levels underground. "Since we were the only customer for the ore," said Dr. Merrill Eisenbud, who was head of that office at that time, "we should see to it that the standards that already existed could be met." Soon after issuing that recommendation, the functions of Eisenbud's office were inexplicably removed from his department in New York to Washington.

Then, despite the billions of government dollars spent to develop atomic weaponry, the AEC claimed it lacked the funding to enforce mine safety, and turned the job over to the states and the mining companies.[34] The companies did little. And when the states tried to intervene, they were charged with bureaucratic meddling and endangering the national security. One Colorado inspector commented that in the 1950s "anybody that said a thing against uranium mining was suspected of being a communist."[35]

In 1967 Eisenbud helped develop a machine that could identify miners who had already suffered heavy radon exposures, thus aiding them in getting early treatment. The machines were available for use in both Denver and Salt Lake City. But the AEC and the Public Health Service declined to use them, claiming that funds for a testing program were not available. Eisenbud found that "hard to believe . . . because we were talking about a very small amount of money."[36]

And by that time evidence was beginning to pile up that the mines were creating an epidemic of lung cancer. Colorado and other states began to fear a landslide of compensation claims that could cost taxpayers and industry millions. Their fears were substantiated by a PHS study that had begun in 1950, when the service began collecting data on uranium miners and how they were dying. In 1960 the PHS handed the figures to Joseph Wagoner, a recent doctoral graduate of the Harvard School of Public Health. Wagoner told us in an extensive Washington interview that by 1964 "we showed twelve lung cancers in this group where just 2.8 were expected. We then updated the analysis one more year, and showed twenty-two lung cancers where there should have been only 5.7. When we went through 1965 we found thirty-seven lung cancers where there should have been just seven. And through 1978, with that same group, we now show 205 lung cancers where there should have been only forty. In other words there has been a consistent fivefold increase in lung cancer among this group right down the line."[37]

Still, however, the AEC refused to take responsibility for the enforcement of mine-safety regulations. Backed by the pronuclear Joint Committee on Atomic Energy (JCAE), which had effectively blocked any congressional attempts to regulate the mining industry, the AEC sailed along with little regard for the health of its miners--until 1967. Then, at a stormy JCAE hearing session, Secretary of Labor Willard Wirtz charged that "the best available evidence is that over two-thirds of the approximately 2,500 underground miners are working under conditions which at least triple their prospects for dying from lung cancer if they continue this work and these conditions remain unchanged." Year after year of "debate and discussion had produced nothing."[38]

The JCAE continued to insist that more study was needed. But one of its members complained that people were now "saying that the Joint Committee was for love, motherhood, apple pie and lung cancer."[39] During the Nixon administration it tried to recapture lost ground by staging more hearings, hoping to restore its public image and forestall enactment of new regulations. This time the JCAE focused on the possibility that cigarette smoking rather than radon was at fault. But the PHS statistics indicated otherwise. Robert Finch, Nixon's secretary of health, education, and welfare found the thesis "not persuasive." Undersecretary of Labor James Hodgson noted that "European pitchblende miners were dying of lung cancer before the introduction of tobacco to Europe."[40]

By 1971, despite continued resistance by the JCAE, federal standards for radon gas levels in uranium mines were created. But for many they were too little, too late. In 1979 Merrill Eisenbud, long a nuclear supporter, told a Senate hearing that the plague of lung cancer among American uranium miners was "totally avoidable." There was, he said, "a total failure of initiative with respect to the radon exposure problem, and I believe the fact that the Atomic Energy Commission did not take the steps it took everywhere else in this program to safeguard the employees, is uniquely responsible for the death of many men who developed lung cancer as a result of the failure of the mine operators, who must also bear the blame, because they too had the information, and the Government should not have had to club them into ventilating their mines."[41]

Dr. Joseph Wagoner, however, felt even the new standards were far from adequate. And enforcing them was yet another story. Mine owners were deliberately deceiving the government about the levels of exposure, and they were getting away with it. The radon levels were being measured by setting collection bags on ventilation shafts. The air in the bags would then be tested for radon. "But," Wagoner told us, "the government had only a single inspector [per mine]. So all the companies had to do was find out when the inspector was coming and have somebody run in front of the guy and get to the bags and reduce the concentration."

Wagoner also told us that the companies would time their blasting schedules to circumvent the measurements. The government would often monitor mine air in the morning and evening. So the companies "were sending the workers out of the mines at lunch break, shutting off the ventilation and blasting inside the mine to loosen the ore. When the workers came back at one o'clock in the afternoon, they were getting walloped with seventeen working levels," which was seventeen times the legal standard. The miners left work having been hit with extreme doses, which were never recorded in company files. It was "false bookkeeping, pure and simple."

In 1980 Wagoner quit the Public Health Service after twenty years. He told us that fall that uranium mining as practiced in the U.S. remained the moral equivalent of "genocide." His last official act, he said, "was to recommend that the current standards in the mines are so totally inadequate that they are causing a doubling of lung cancer among miners. Fully 40 percent of the mines are working in violation of those standards, which are inadequate anyway."[42]


Conditions in the uranium mills--where the raw ore is crushed and treated to extract the uranium--may not be any better. In the late 1970s two mill workers joined a major suit by sixty-five miners, charging working conditions had destroyed their health. The men reported regularly eating lunch in areas thick with uranium dust. Some were given cloth respirators, but they became caked with dust and were so rarely cleaned by the company that many workers simply stopped wearing them. Dust was so pervasive that a cleanup operation at one abandoned mill recovered $100,000 worth of uranium dust between two layers of roofing.[43] In another case the Colorado Bureau of Investigation confirmed that a mill owner--the Commonwealth Edison Company of Chicago--had regularly falsified exposure levels to avoid cleaning up their operations or paying compensation to workers.[44]

Neither the miners nor the mill workers were generally informed of the special dangers of radiation. Again that policy had tragic costs. In 1979 a Utah miner named George Val Snow told hearings on low-level radiation chaired by Senator Edward Kennedy that of the forty-two miners with whom he had worked, twenty-two were already dead of various causes. He had worked in the Marysvale mine from 1950 to 1960; his father and brother, both victims of lung cancer, were among the dead. Snow told of a game the workers would play to see whose breath was most radioactive. The company, Snow said, "had a Geiger counter out to measure the ore to see whether it was ore or waste. As we would come out at night we would blow on it to see who could put it furthest up on the scale. Sometimes we could put it clear off scale."

But despite four centuries of experience with death in the mines, and decades of knowledge that radon gas caused lung cancer, no one had told George Snow or his coworkers there was ever a danger. Said Snow: "We were not concerned that there was anything wrong."[45]


30. Joseph Wagoner, interview, October 1981. See also, Wagoner, "Uranium Mining and Milling: The Human Costs," remarks at the University of New Mexico Medical School, Albuquerque, N.M., March 10, 1980; and Wagoner, "Uranium: The United States Experience" (Washington: Environmental Defense Fund, 1525 18th St. NW, 20036); and Glen Peterson, "Lung Cancer Rate Among Uranium Miners Five Times Higher than National Average," National Health Federation Bulletin, March 1980.

31. Radon 222 is a gas found in uranium-containing ores. It has a half-life of 3.9 days. As radon 222 decays, a series of radioactive elements called radon daughters are formed. Radon daughters, including polonium, lead, and bismuth, emit alpha radiation, which can become attached to dust or water particles in the mines and then inhaled by miners. Once inhaled, the alpha radiation is delivered through the respiratory system where the particles are deposited.

Lung diseases among uranium miners have been documented since the 1500s. Cancer was first identified in 1879. Since then, studies of German, Czech, Yugoslav, and U.S. miners have demonstrated that exposure to radon daughters is associated with increased risk of lung cancer for workers in underground mines generally and uranium mines specifically.

Studies of miners in the United States began in the early 1960s, nearly twenty years after large-scale uranium mining began for the nuclear weapons program. A review of environmental records shows that many miners were exposed to radon levels greater than one working level (WL) (1.3 X 10^5 MeV of alpha radiation from radon daughters per liter of air). In 1955 health officials and scientists recommended that radon levels in mines be no greater than 1 WL. As late as 1968 nearly 30 percent of underground uranium mines still had radon daughter exposures to higher than 1 WL. Proceedings are currently under way to reduce mining exposures to 0.7 working level month (WLM) from the current 4 WLM (a working level month is 173 hours per month exposure to an air level of 1 WL).

During the 1960s researchers found the U.S. uranium miners suffering from shortness of breath, persistent cough, pneumoconiosis, wheezing, and chest pain. Pulmonary emphysema, fibrosis, and chronic bronchitis were also linked with chronic exposures to airborne radiation in the mines. In 1976 an epidemic of nonmalignant respiratory diseases among U.S. miners was confirmed when 80 such deaths were observed when 24.9 deaths were expected.

Excess lung-cancer mortality among U.S. uranium miners with three or more years of underground experience was reported in 1962. One year later 47 cancer deaths (contrasted to 16.1 expected cancer deaths) were reported among miners who received chronic radon daughter exposure in the 1 to 2 WL range. In 1964 a tenfold excess of respiratory cancer surfaced among white miners with five or more years of underground exposures. A 1950-1978 follow-up of white underground U.S. uranium miners found 205 lung-cancer deaths when 40 were expected. Follow-up done on 780 American Indian miners found 11 deaths when 2.6 lung-cancer deaths were expected.

Early epidemiologic studies found that the histologic cell type of lung cancer among U.S. miners was the small cell undifferentiated type, very different from the type found in the general population. Later studies, however, have found three types--epidermoid, small cell undifferentiated, and adenomatus--prevalent among uranium miners. The early studies also indicated that uranium miners who smoked were more apt to develop cancers than nonsmokers. Recent studies of lung cancer among nonsmoking Indian miners and follow-ups of the early epidemiologic studies, however, show that smoking serves only to shorten the lung-cancer latency period--the same types of cancer were found among both smokers and nonsmokers, the nonsmokers' cancers appearing approximately two to five years after those in smokers were diagnosed.

References: V. E. Archer, J. D. Gillam, and J. Wagoner, "Respiratory Disease Mortality Among Uranium Miners," in Annals, New York Academy of Sciences 271 (1976): 280; D. A. Holaday, et al., Control of Radon and Daughters in Uranium Mines and Calculations on Biological Effects, PHS Publication No. 494 (Washington, D.C.: U.S. Government Printing Office, 1957); F. E. Lundin, et al., Radon Daughter Exposure and Respiratory Cancer Quantitative and Temporal Aspects, NIOSH and NIEHS Joint Monograph No. 1 (Springfield, Va.; NTIS, 1976); V. E. Archer, et al., "Hazards to Health in Uranium Mining and Milling," Journal of Occupational Medicine 4 (1962): 55-60; J. K. Wagoner, et al., "Cancer Mortality Patterns Among U.S. Uranium Miners and Millers, 1950-1962," Journal of the National Cancer Institute 32 (1964): 787-801; J. K. Wagoner, et al., "Mortality of American Indian Uranium Miners," Proceedings, XI International Cancer Congress, 1975.

32. In Our Own Back Yard, transcripts, Eleventh Hour Films, 29 Jones St., New York City 10014.

33. H. Peter Metzger, The Atomic Establishment (New York: Simon and Schuster, 1972), p. 120.

34. U.S. Congress, Senate Committee on Labor and Human Resources, Subcommittee on Health and Scientific Research, and the Committee on the Judiciary, Health Impact of Low-Level Radiation, 1979, 96th Cong., 1st sess., June 19, 1979, pp. 19-23 (hereafter cited as 1979 Radiation Hearings.)

35. Metzger, Atomic Establishment.

36. 1979 Radiation Hearings, pp. 19-23.

37. Wagoner interview.

38. Metzger, Atomic Establishment, pp. 131-133.

39. Ibid.

40. Ibid., p. 140.

41. 1979 Radiation Hearings, pp. 19-23.

42. Wagoner interview.

43. High Country News, September 5, 1980.

44. Peggy Strain, "Edison Unit's Uranium Mill Health Data Falsified: Study," Chicago Sun-Times, September 28, 1980.

45. 1979 Radiation Hearings, pp. 48-50.




The Radium-Dial Painters

Other workers also have been uninformed about their exposures to radiation--and have paid a fearsome price. Among the first were several thousand Americans--most of them women--hired to paint radioactive radium onto watch faces, making them glow in the dark.[46]

Radium is a by-product of uranium ore, found in nature. In the 1920s company managers told many employees that ingesting radium would add to their vitality, curl their hair, improve their complexions, and make them sexually attractive. The dial painters thus eagerly licked their paintbrushes to give them the fine point they needed to paint the watch dials. Many also applied the radioactive substance to their rings, buttons, and belts. One man even painted his teeth to make them glow--an act that anticipated the current widespread use of uranium in the manufacture of false teeth and ceramic tooth caps.

By 1924 news that four employees of the U.S. Radium Corporation had died of necrosis of the jaw--a rare degenerative disease--reached the Board of Health of Orange County, New Jersey. Eight other women were seriously ill, and local dentists were reporting still more cases. But when Katherine Wiley of the National Consumers League approached the company, she was told the problem was due to poor dental hygiene.[47]

The company, however, had already secretly hired Dr. Cecil Drinker of Harvard to study the plant. Drinker found radium paint spattered throughout the work area, on employees' clothes and even on their underwear. He also learned U.S. Radium had ordered its workers to stop licking their paintbrushes, a clear indication they knew something was wrong. Drinker's report clearly implicated radium as the source of the necrosis epidemic.[48]

The company responded with hostility. Katherine Wiley was given an edited version of Drinker's report, which said "every girl is in perfect condition." Drinker protested and was threatened with a lawsuit. When he later published his full paper anyway, U.S. Radium brought in Dr. F. B. Flinn of Columbia University. Flinn gave the company a clean bill of health. But in 1925 Dr. Harrison Martland, a local health official, confirmed five deaths from radium poisoning and estimated the average radium-dial painter might well ingest, over a five-year period, one thousand micrograms of radium--ten thousand times the 1981 standard.[49] In light of Martland's findings, Flinn repudiated his own study.

Ensuing studies continued to confirm the worst, with indications of increased bone cancer, cancer of the colon, diseases of the blood-forming organs, respiratory problems, and necrosis of the jaw. One study showed that the exhumed bones of former dial painters exhibited such high levels of radium that they photographed themselves on unexposed film.[50] And as the victims themselves began complaining of their diseases and filing lawsuits, media coverage led to increased public pressure on the companies to tighten up their procedures. That slowed, but did not stop, the epidemic. Because it emits alpha radiation, radium can be lethal when ingested in sufficient amounts. But radium also emits penetrating gamma rays, and working with it outside the body can lead to exposures that cause a wide range of diseases, including breast cancer and multiple myeloma, which continued to surface even in the "modernized" dial plants.[51]

Finally, faced with a raft of lawsuits, one operation--the Illinois-based Radium Dial Company--went out of business in 1934. Soon thereafter, however, a "new" company called Luminous Processes emerged as the owner of Radium Dial's plant and paymaster of its employees. Joseph Kelley, Sr., former president of Radium Dial, now became president of Luminous Processes, whose practices were remarkably similar to those of Radium Dial. Investigative reporter Anna Mayo reported in The Village Voice that Luminous had grown, by the 1970s, into a multinational concern with offices in Manhattan, Switzerland, and Hong Kong.[52]

But despite its expansion Luminous apparently maintained many of its traditional modes of production. In 1976 the NRC fined Luminous for sloppy practices at its Illinois factory. In 1978 the commission ordered the plant shut. Luminous responded by hastily ordering its equipment trucked to Georgia, where it had a plant free of NRC jurisdiction. The commission caught the trucks and confiscated the equipment. The Georgia plant was closed soon thereafter; local officials were still reporting high radiation levels on site in 1980.[53] Mayo later visited the Illinois site and reported that seven of the ten former Luminous workers she interviewed there were suffering from breast cancer and tumors on their feet.[54]

In the mid-1970s luminous watch-dial production shifted from radium to the use of thin glass slivers filled with tritium, a radioactive isotope of hydrogen capable of glowing without an electric source. Though the process was generally believed to be safer than painting with radium, the American Atomics Corporation of Tucson in 1979 contaminated an entire neighborhood with tritium, including the kitchen of the Tucson public school system. Meanwhile radioactive materials continue to be used in a wide range of light sources including some coffeepots, hand-held calculators, and nightlights.


46. Scott/NlOSH Report, p. 8.

47. Roger J Cloutier, "Florence Kelley and the Radium Dial Painters," Health Physics Journal 39, No. 5 (November 1980): 711-717.

48. Ibid.

49. Harrison S. Martland, "Occupational Poisoning in the Manufacture of Luminous Watch Dials," Journal of the American Medical Association 92 (1929): 466-477.

50. Cloutier, "Florence Kelley and the Radium Dial Painters."

51. Baverstock, et al., "Risks of Radiation at Low Dose Rates," Lancet 21 (February 21, 1981): 430-433; Jack Cuzick, "Radiation-Induced Myelomatosis," New England Journal of Medicine 304, No. 4 (January 22, 1981).

52. Anna Mayo, "We Are All Guinea Pigs," Village Voice, December 25, 1978, p. 18.

53. Environmental Radiation Surveillance Report, Georgia Department of Natural Resources and Environmental Protection Division, summer 1979 to summer 1980, pp. 177-186.

54. Mayo, "We Are All Guinea Pigs."




The Manhattan Project

Although several radium-dial workers won compensation claims in court, publicity of the primitive conditions in which they worked did little to better the lot of workers elsewhere in the nascent nuclear industry. While the people of Hiroshima and Nagasaki were the most obvious victims of the atomic attack, Americans also died from those bombs--many from the work of producing them.

Part of the problem was a cavalier attitude among scientists toward the potential dangers of radiation. In the 1930s, for example, Dr. J. Robert Oppenheimer would occasionally drink a solution of highly radioactive sodium 24 and then, to the amazement of onlooking graduate students, send a Geiger counter off-scale with his hand.[55] In 1944 Dr. John Gofman, then a young graduate student working on the Manhattan Project, which produced the first atomic bomb, was heavily dosed when he was ordered to perform by hand a highly dangerous task involving plutonium that should have been handled only by machine. Gofman told us that in another instance the chief concern of safety personnel at the Berkeley Laboratory in California was the stacking of cardboard boxes that "might fall and hit someone." The room in which they were stacked, however, was highly radioactive, and the people in it were being severely exposed--with no particular concern on the part of the safety teams.[56] In another case Dr. Karl Z. Morgan, an original member of the Manhattan Project Health Physics Group, could not convince plant engineers to separate the workers' drinking-water system from the industrial-process system. Thus a leak or a mistaken turn of a valve could result in plant workers drinking radioactive water.[57]

Another Los Alamos scientist named Harry Daglian caused his own death in a process he called "tickling the dragon's tail." By arranging a wall of tungsten-carbide bricks around a uranium or plutonium source, Daglian could determine how much material was needed to cause a chain reaction. But on August 21, 1945, Daglian accidentally caused a plutonium source to go critical. The air in his laboratory turned blue and radiation seared Daglian's flesh. He died a horrifying death. Less than a year later Daglian's boss, Louis Slotin, suffered a similar fate.[58]

The haphazard practices inevitably carried over to the workers at Los Alamos, many of them enlisted GIs. One, a GI named Ted Lombard, remembered that he and his coworkers often handled dangerous materials with their bare hands, and without proper monitoring. "Contamination was rampant," he said. In certain shops "the fumes and dust were constantly in the air . . . The dust was on the floor. Uranium chips would be in your shoes. You went to eat with the same clothes and sat on the beds."[59]

By the summer of 1945 Lombard was complaining of stomach problems. In December the Army gave him a medical discharge. His health deteriorated, with the tissue in his lungs becoming fibrous and his skin developing sores that would not heal. The worst of it, however, came with his children and grandchildren. "I have a daughter, 31 [who] appeared to be healthy until we looked back," Lombard said to the 1980 Citizens' Hearings for Radiation Victims in Washington. "It's a slow, insidious thing. Now she's in a wheel chair with neuromuscular, undiagnosed, multi-type seizures, lack of antibodies, lack of digestive enzymes. . . . My youngest son is a deaf mute, subject to multiple seizures, blood conditions and other undiagnosed problems. He's mentally retarded too. Another son has migraine headaches . . . is aphasic and has blood problems. The two grandchildren are starting to show signs of digestive problems and blood conditions."[60] Lombard has filed a claim with the Veterans Administration. The VA has acknowledged his exposures at Los Alamos but refuses to provide his medical records.

Evidence has also surfaced that operation of Los Alamos may have harmed the entire community. A 1979 study by the New Mexico tumor registry showed that from 1969 to 1974, breast cancer in white females in Los Alamos County was more than twice the national average. Cancers of the stomach, pancreas, bladder, and rectum were three times the state average. Cancer of the colon was more than double the state average.[61]

The only long-term health survey of Manhattan Project workers at Los Alamos was conducted by Dr. George Voeltz, director of Health Effects Research at Los Alamos. Voeltz concluded, after contacting twenty-six employees, that "no medical findings were reported which could be attributed definitely to plutonium."[62] But his findings have been disputed. Dr. Edward Martell, a radiation researcher for the National Center for Atmospheric Research in Boulder, examined Voeltz's data and concluded that "with equal justification one may state that most of the serious medical findings in this group can be attributed to plutonium."[63]

In 1974 Voeltz began a larger study of 224 workers exposed to plutonium at Los Alamos. Ted Lombard was not in either of Voeltz's samples. But in a form letter to prospective participants for his second study, Voeltz revealed the results he anticipated: he asked former workers to "please cooperate to help us prove that exposures to low-levels of plutonium are not harmful."[64]


55. Rapoport, The Great American Bomb Machine, p. 122.

56. Gofman interview.

57. Karl Z. Morgan, interview, October 1980.

58. Karl F. Hubner and Shirley Fry, "The Medical Basis for Radiation Accident Preparedness," Proceedings of the REAC/TS International Conference, Oak Ridge, Tenn., October 1979, p. 17.

59. "Statement of Ted Lombard," Citizens' Hearings.

60. Ibid.

61. "Cancer Rate Elevated in Los Alamos County," Albuquerque Journal, October 12, 1979.

62. Ibid.

63. Ibid.

64. Ibid.




The Portsmouth Naval Shipyard

No such bias was apparent in the work of Dr. Thomas Najarian, a blood specialist at Boston Veterans' Hospital. In the fall of 1977 Najarian was examining a former nuclear welder named Adolph Pohopek, who was suffering from leukemia. Pohopek had worked at the Portsmouth Naval Shipyard in New Hampshire, and asked Najarian if radiation exposure at the shipyard might have had anything to do with his leukemia.

Portsmouth, which is about sixty miles north of Boston along the Atlantic coast, has been building warships since 1800. It constructed the first American military submarine in 1917. Between 1954 and 1977 a total of sixty-three atomic subs were either built, overhauled, or repaired at Portsmouth. The General Dynamics Corporation operates the yard on government contract, and roughly a third of the 24,525 workers listed as having worked at PNS have been exposed to radiation, among them Adolph Pohopek.[65]

Pohopek told Najarian that numerous Portsmouth workers seemed to die unusually young, and that working conditions in the yards were not all they should be. Pohopek then gave Najarian the names of fifty people who had recently worked at Portsmouth. Najarian found that ten of them were already dead, and he asked the VA for funds to do some follow-up research. The VA turned him down, saying exposures at Portsmouth were too low to have caused any of the deaths.[66]

But Najarian persisted. Using his own money for postage and paper, he mailed questionnaires to about forty past and present Portsmouth workers. Within a week the head of the VA's research division in Washington called Najarian, demanding to know who was funding his research and asking for all his correspondence with naval personnel. When Najarian asked that the request be put in writing, he never heard from the VA official again.[67]

When the questionnaires themselves began coming in, they revealed what Najarian considered an alarmingly high rate of leukemia deaths. In mid-November of 1977 Najarian asked The Boston Globe for help. Although the Navy had refused to give Najarian any of its records, he and an investigative team from the Globe were able to gather some seventeen hundred death certificates relating to Portsmouth workers. The Navy also refused to release any worker exposure records. But with the help of statistician Dr. Theodore Colton, Najarian was able to isolate those workers whose families could confirm that they were exposed to radiation at Portsmouth. In June of 1978 Najarian and Colton published a paper in Lancet, indicating a leukemia rate among exposed Portsmouth workers that was four times normal.[68]

The study was soon attacked by Admiral Hyman Rickover, chief of the Navy's nuclear programs and pioneer of the atomic submarine. A hard-driving perfectionist who was former President Jimmy Carter's mentor while Carter was in the Navy, Rickover has an almost legendary reputation for turning out the best-trained personnel in the nuclear field. In 1958, under his watchful eye, an enlarged version of the nuclear sub reactor opened at Shippingport, Pennsylvania, as the world's first commercial demonstration reactor to produce electricity. Rickover also had a great stake in the Portsmouth operation, and vigorously defended the record of the nuclear Navy. In 1978 he told a congressional hearing that "we have had no accidents which caused people to be injured or which had a radiobiological effect on the environment." But he scrupulously added that "I do not include the long-term effects of low-level radiation."[69]

And that was precisely what was at issue. Rickover, after congressional pressure, soon agreed to have the Center for Disease Control (CDC) evaluate Najarian's findings. The CDC turned the study over to its subagency, the National Institute for Occupational Safety and Health, which asked--among others--Dr. Thomas Mancuso to serve on its independent scientific "watchdog" panel which had been mandated by Congress.

Controversy soon clouded the study. Mancuso refused an appointment to the watchdog panel after NIOSH refused to guarantee him access for an on-site evaluation of the data sources. In December 1980 several NIOSH researchers concluded that "excesses of deaths due to cancer and due specifically to cancers of the blood and blood forming organs were not evident" at Portsmouth.[70] But on January 5, 1981, the Globe reported that five of six advisory committee members they polled felt that the NIOSH data had in fact revealed "a trend toward higher leukemia rates among workers who received higher doses of radiation." One panel member, Dr. George Hutchinson, who is generally known to be pronuclear, conceded to the Globe that "there is a trend of leukemia with dose"--that the evidence indicated the more radiation the Portsmouth workers received, the more likely they were to contract leukemia.[71]

In fact NIOSH submitted its final report for publication without giving its full congressionally mandated advisory committee a chance to discuss its conclusions. Committee member Irwin Bross threatened to sue NIOSH to get them to send him the data, and then charged that the numbers "flatly contradict statements made by CDC/NIOSH." Bross found a large excess of lung cancer linked to radiation exposure.[72]

Though controversy still rages over the Portsmouth studies, there seems little doubt in the minds of the people working there that something might be seriously wrong. In January of 1979 Dr. John Cobb of the University of Colorado Medical School, a member of the NIOSH advisory panel, visited Portsmouth to evaluate the situation for NIOSH director Dr. Tony Robbins. When he got there, Cobb found "antagonistic" and "explosive" differences between the unions and the Navy over health and safety issues, and that the unions felt "the Navy would lie, cheat and do anything to cover up their deficiencies in management."[73]

Cobb also discovered "that there could be an incentive for workers to keep their recorded radiation exposure lower than actual exposure," and that the Navy would often issue "waivers" to workers to keep them working in radioactive areas even after they had exceeded exposure limits. Cobb said he "was told that workers were led to believe that radiation exposure would not harm them."[74] Because radiation work brought higher pay, employees were reluctant to wear film badges for fear of being put in lower-paying jobs if they "burned out."


65. "Epidemiologic Study of Civilian Employees at the Portsmouth Naval Shipyard, Kittery, Maine," National Institute of Occupational Safety and Health, released December 3, 1980 (hereafter cited as "NIOSH/PNS Report").

66. "Statement of Thomas Najarian," Effect of Radiation on Human Health, February 28, 1978, p. 1236.

67. Ibid.

68. Thomas Najarian and Theodore Colton, "Leukemia among Shipyard Workers," Lancet, June 1978.

69. "Statement of Hyman Rickover, Adm. H.G., Deputy Commander, Nuclear Power Naval Sea System Command, USN, Department of Defense," Effect of Radiation on Human Health, p. 1272.

70. "NIOSH/PNS Report," p. 31.

71. N. Breslius, "Questions Raised in Shipyard Cancer Study," Boston Globe, January 5, 1981, p. 22.

72. Irwin D. J. Bross, director of biostatistics, Roswell Park Memorial Cancer Research Institute, memorandum to "Competent and Responsible Members of the Oversight Committee," January 26, 1981.

73. John C. Cobb, Report of Visit and Recommendations Regarding Studies of Cancer Incidence at Portsmouth Naval Shipyard, NIOSH Report, January 30-31, 1979, p. 5 (hereafter cited as Cobb/NIOSH Report).

74. Ibid., p. 6.




Enrichment and Reactors

Labor anger and questions of radioactive workers' safety are also epidemic in America's uranium enrichment industry. Enrichment--the process of turning milled uranium ore into high-grade reactor fuel and weapons material--involves huge quantities of energy, thousands of workers, and billions of dollars in taxpayer investments and subsidies.

These are three major enrichment plants in the U.S.--at Paducah, Kentucky; Piketon, Ohio; and Oak Ridge, Tennessee.

At Paducah, which is operated under government contract by the Union Carbide Corporation, a worker named Joe Harding has charged that company management put a tight lid on all discussions of plant safety. Words like radiation were banned from conversation, he said. "Before you worked there, the FBI ran a security check. And after you were hired, the FBI would keep an eye on you."[75]

Through his eighteen and a half years at Paducah, Harding, a maintenance worker, regularly breathed radioactive gases "so thick you could see the haze in the air when you looked at the ceiling light, and you could taste it coated on your teeth and in your throat and lungs. After a couple hours of work the uranium dust on the floor was so thick you could see your tracks when walking around." Leaks were rampant, Harding added, and protective clothing was minimal. "There was no particular lunch room or lunch hour. You just sat down somewhere, blew away the uranium dust and had your lunch."[76]

According to Dr. Karl Z. Morgan, working in air laden with uranium hexafluoride gas, prevalent at the enrichment plants, can contaminate the lungs and entire gastrointestinal tract and can give the body heavy doses of alpha, beta, and gamma radiation. Serious beta radiation to the skin can also result. There is a double risk because the hexafluoride, which is combined with the uranium, is itself highly corrosive and toxic.[77]

By late February of 1980 Harding--at age fifty-nine--had lost 95 percent of his stomach and suffered from chronic lung problems and skin sores that would not heal. There was a large tumor wrapped around his spine in the abdominal cavity, and fingernail-like growths protruded from his joints. Despite confinement to a wheelchair, Harding spent the last years of his life speaking out against conditions at Paducah. When he had started work at age thirty-one, he said, he was a strong, vigorous man who was "never sick" and "could eat anything." His plant supervisors had told him "you will not get any more radiation in this work than you get from wearing a luminous dial wristwatch."[78]

Three decades later, an eighty-pound cripple racked with constant pain, Harding extracted a promise from the DOE that his case would be fully evaluated. But after he died, his widow, Clara, was told her husband had rarely been monitored for radiation "because of the low potential for exposure" among workers in his field.[79]

The DOE records did reveal that at one point in Harding's career he had produced a urine sample which showed ten times the allowable limit of radiation. But a sample taken the next day was said to have shown a dramatic drop in radiation levels. According to Dr. Morgan it takes several days for uranium to pass through the body, and thus "either the second sample taken of Mr. Harding's urine was mistakenly analyzed, or it was falsified."[80]

Ironically, though no reliable studies have been done of worker health at Paducah, the Kentucky Health Department has found that the counties around the plant have the highest cancer rate in the state, well above the national average. Breast cancer among women and prostate cancer in men were the most prominent. Communities near the plant showed excesses of colon and lung cancer among both sexes--diseases commonly linked to radiation.[81]

Unfortunately conditions at Paducah do not appear to be unique. According to Dennis Bloomfield, president of the Oil, Chemical and Atomic Workers local union at Piketon, one incident there spread so much contaminated dust that workers were forced to destroy their shoes for fear of carrying radiation home to their families. "The lunch table we were eating on was so contaminated it had to be destroyed," he said.[82]

In 1979 Bloomfield's union waged a long and bitter strike for improved health and safety conditions at the plant. Among other things it demanded that monitoring of worker conditions be taken out of the hands of the DOE and given to the Occupational Safety and Health Administration (OSHA), which the union hoped would offer better protection for its workers. According to a 1980 GAO report the DOE had inspected all three enrichment plants only a total of three times in the five years from 1975 to 1980. Neither the NRC nor OSHA were allowed to monitor radiation exposures inside any of the enrichment plants, and the GAO noted that by and large company management was very slow to respond to worker complaints of unsafe conditions.[83] Finally, after the workers' costly strike, Goodyear--which operates Piketon under federal contract--gave in to some of the union's demands. The DOE, however, still dominates access and monitoring of working conditions at all enrichment facilities.

Because of such lack of controls, many American enrichment workers live in fear of what their jobs might be doing to them. Two such Piketon employees--Mike and Kathy Schuller--were interviewed by British television in 1980. They were both contaminated after having been told by Goodyear that their particular jobs were safe from radioactivity. When Kathy complained, she was told "either you do it, or you get sent home."[84] Pregnant at the time, she told the TV crew, "I kind of worry about what is going to happen to my unborn child." Kathy said she "will feel better after it gets here, and that it's got everything--all ten fingers and ten toes."[85] On December 18, 1980, the Schullers' son was born with only one hand.


Fears like those of the Schullers are also starting to surface in the nuclear power field. Since 1957, when operations began at the first commercial demonstration power reactor at Shippingport, Pennsylvania, a burgeoning industry has evolved employing more than eighty thousand people. In 1972 the EPA predicted annual exposure levels per worker would not exceed .225 rem by the year 2000. Within six years the reported average exposures at atomic reactors had more than tripled that EPA prediction.[86] Ironically efforts to reduce exposures to the general public may be partly at fault. By trapping radiation on site that would normally be vented, levels within the plant go up--at peril to the employees.

And during crisis situations at a plant conditions become even worse. Utilities often hire "jumpers," short-term workers who handle high-exposure jobs, where legal limits of exposure are quickly consumed. The practice is sometimes called "body banking," whereby unskilled and often uninformed laborers are sent into "hot" areas at high hourly wages for brief but dangerous stints. In 1971 the Nuclear Fuel Services reprocessing facility at West Valley, near Buffalo, New York, used nearly one thousand jumpers to handle an emergency. According to Dr. Marvin Resnikoff, a professor of physics at the nearby Rachel Carson College, the jumpers were often "high school graduates with minimal job experience, unable to find employment in the depressed job market in Buffalo. They were given extremely limited information regarding radiation hazards."[87] Though federal standards dictated that they not work with radiation for at least three months after their initial employment, many of the jumpers returned to NFS within days bearing false identification, and were sent back in for more doses. Former President Carter served as a jumper after a nuclear accident at Chalk River, Canada, in 1952. Carter got a year's dose in less than ninety seconds.[88]

One of the problems that makes "body banking" and all other nuclear work even more dangerous is that few if any of the workers involved may be getting reliable exposure records from their employers. Much of the monitoring relies on the use of dosimeter "badges," which are usually worn while a person works in a hot area. The badges are generally built around a special film designed to record gamma radiation.

But other lethal forms of radiation escape the badges. And even for gamma radiation they may not be reliable. A 1980 study by the Nuclear Regulatory Commission found that 80 percent of all radiation monitoring devices tested failed to come within 50 percent accuracy. Conducted by the University of Michigan, the study covered fifty-nine processing firms and involved a sample of about 90 percent of the radiation-dosimetry industry. By mixing in "control" badges with those coming from work sites, the Michigan researchers found that a large part of the dosimetry work being done at American nuclear sites was unreliable at best. When test badges were exposed to levels of radiation corresponding to a major nuclear accident, the extreme doses went undetected.[89] The response by the Health Physics Society, which sets monitoring standards, however, was not to improve the technology--but rather to relax the dosimetry standards, making it easier for the industry to pass future tests.[90]

Meanwhile preliminary indications from reactor work are not encouraging. According to death certificates obtained by the union representing workers at the Shippingport and Beaver Valley I reactors in Pennsylvania, multiple myeloma and leukemia rates among former workers at those two plants are far above normal state rates.[91] Indications are also strong that there may have been serious damage incurred by workers at Three Mile Island (TMI). According to the Kemeny Commission, which was established by President Carter to study the accident, workers at TMI were exposed to levels that "exceeded the limits of the licensee's measurement capability of one thousand rads per hour." During the accident several repair parties entered these high-radiation areas without knowledge of radiation protection supervisors. According to an NRC report on the accident, "items of protective clothing were not worn, resulting in several instances of head contamination." Sample containers of highly radioactive water were "handled directly without the use of remote tools or shielding."[92]


75. Joe Harding, interview with Pierre Fruling, published in newsletter, "Uranium Killed Joe" (available from the National Committee for Radiation Victims, 317 Pennsylvania Ave. SE, Washington, D.C. 20003).

76. Ibid.

77. Karl Z. Morgan, letter to Robert Hagar, Esq., February 4, 1981 (hereafter cited as Morgan letter).

78. Joe Harding interview.

79. Department of Energy, letter to Clara Harding, January 1981 (available from Robert Hagar, Mrs. Harding's attorney, 1471 N. Capitol St., NW, Washington, D.C.).

80. Morgan letter.

81. Sun Democrat (Paducah, Ky.), November 2, 1977, p. 1.

82. Dennis Bloomfield, interview, For My Working Life, film transcript, copyright ATV, April 28, 1981 (hereafter cited as ATV Transcript).

83. Sheila Hershow, "Atomic Plant Probe Confirms Charges Aired Six Years Ago," Federal Times, August 25, 1980, p. 13.

84. ATV Transcript.

85. Ibid.

86. Scott/NlOSH Report, p. 30.

87. Marvin Resnikoff, "On the Job at NFS--Occupational Hazards in the Reprocessing Business," Sierra Club Radioactive Waste Campaign, Buffalo, N.Y.

88. Jimmy Carter, Why Not the Best? (New York: Bantam, 1976), p. 60.

89. "Performance Testing of Personnel Dosimetry Services, Report of a Two Year Pilot Study, October 1977--December 1979," NUREG/CR 1304 (Washington, D.C.: U.S. Nuclear Regulatory Commission).

90. Ibid.

91. Deaths Among Operating Engineers Who Worked at the Shippingport Site

  1 accident (crushed chest)
  9 cancer:  5 non-bone-marrow related cancers
             4 bone-marrow related cancers
  2 bone-marrow leukemias
  2 multiple myelomas
 12 heart and other diseases
____________________________________________________________________
 22 deaths total among operating engineers at Shippingport (1970-79)

92. J. G. Kemeny, et al., The President's Commission on the Accident at Three Mile Island, the Need for Change: The Legacy of TMI, Washington, D.C., 1979, Appendix iii, Nos. 4 and 18. (hereafter cited as Kemeny Report).




Rocky Flats

Problems among workers in the reactor industry are just starting to surface, but such complaints have long been common at the Rocky Flats plutonium factory near Denver. Rocky Flats is the "Grand Central Station" of the nuclear weapons industry. It recycles fissionable materials from "obsolete" bombs, and it also produces plutonium "triggers" for new ones. Its core is an elaborate system of ventilated stainless-steel glove boxes where workers smelt, press, machine, polish, and measure the plutonium for America's nuclear bombs.

Rocky Flats was operated under government contract by Dow Chemical from the time it opened in 1953 until 1975, when management was taken over by Rockwell International. Dissatisfaction with both Dow and Rockwell has been widespread, and numerous fires and spills have plagued the plant. At least 325 workers are known to have been seriously contaminated in that period. One 1958 survey of an on-site cafeteria showed contamination in fifty of fifty-four areas above "allowable tolerances" for plutonium.[93] In 1965--a year in which at least forty-five workers were contaminated with plutonium--a local union attempted to establish a management-worker safety committee. Dow Chemical management refused to cooperate. In October of that year a fire contaminated an entire production crew of twenty-five workers with up to seventeen times the maximum allowable exposure.[94]

Since the plant opened, thousands of people have been employed at Rocky Flats. But no reliable independent health survey of the work force has ever been published. And some of the indications that have surfaced are not encouraging and have resulted in fierce court battles that may have a profound impact on all radiation-related work to come.

Don Gabel, for example, began work at Rocky Flats fresh out of high school in 1969. A significant part of his day was spent operating a furnace that treated plutonium. In one case a pipe leaked nitric acid laced with plutonium onto his head. Despite assurances from his boss, Gabel became concerned about the effects of working near so much radiation. In one case the pipe that he worked near for long periods of time was tested and "pegged the needle off the dial."[95]

In 1979, after a decade in the plant, Gabel began to suffer from serious headaches, then seizures. Doctors found a malignant brain tumor, which could not be removed. Gabel finally had to move his wife and three children to the Los Alamos Laboratory in New Mexico, hoping to be saved by experimental treatment. It failed. In the fall of 1980 Don Gabel died at the age of thirty. An ensuing autopsy revealed significant quantities of plutonium and americium in his lungs, liver, and bones.

Three months before his death Gabel filed a workers compensation claim against Rockwell International. His wife is pursuing the battle.

The case of Dan Karkenan, a college-trained professional who began work at Rocky Flats in 1968, was never resolved. Karkenan was a mechanical engineer who helped in the cleanup and reconstruction of Rocky Flats after a fire on May 11, 1969, seriously contaminated the plant and sent an uncertain amount of plutonium into the areas south of the plant.

By the spring of 1975 Karkenan began showing symptoms of numbness in his fingers and toes, followed by a loss of coordination and then paralysis in his arms and legs. Doctors were unable to diagnose Karkenan's disease, but he and his family were convinced it could be traced to his work during the cleanup after the 1969 fire, when the entire Rocky Flats area was heavily contaminated.[96] Just before Karkenan died in 1976, he asked his wife Miriam to have tissue samples examined as a part of his autopsy--as was later done with Don Gabel. But when she authorized the autopsy, Miriam Karkenan was told by the hospital that permission was required from Rockwell before her husband's tissues could be analyzed for radioactivity. After three months of wrangling with the company, she obtained permission--and was then told by the hospital that the tissues had been discarded. Karkenan continued to pursue her husband's records from Rockwell International and in late 1979 was sent a "report" ostensibly detailing her husband's exposure history. The document discussed Dan Karkenan's "on-the-job" exposures in 1977, 1978, and 1979--three years after he was already dead.[97]

One landmark case of immense potential impact has been won--against Dow Chemical for its operation of Rocky Flats. It involves the family of Leroy Krumback. Krumback worked with plutonium at Rocky Flats from 1959 through 1974, when he died at age sixty-five of colon cancer. His widow Florence was never told how much exposure her husband was getting, but remembered him coming home often with his hands rubbed raw from Clorox scrubs designed to remove contamination, and with descriptions of how his eyes, nostrils, and feet had been contaminated as well. Florence Krumback's attempts to receive compensation for her husband's death dragged on fruitlessly until 1979, when a young lawyer named Bruce DeBoskey joined her case.

His involvement was well timed. By 1980 public sentiment in Denver and surrounding communities had swung sharply against Rocky Flats. Colorado's governor Richard Lamm had urged President Carter to move the plant to another state, and a business group, organized in part by a local contractor named Rex Haag, was actively working to shut Rocky Flats down.

In February, Dr. Alice Stewart testified at Krumback's compensation hearing. Krumback's records showed he had received 45.67 rems of whole body exposure, which Dow Chemical claimed was a safe dose. But Stewart calculated that the actual "effective" dose was much higher because Krumback had received a substantial portion of it while over the age of forty, when his sensitivity to radiation was greater. His "effective" dose, said Stewart, was more like 222 rems, far more than enough to cause his cancer.[98]

At another hearing in August of 1980 Dr. Karl Z. Morgan found it "unthinkable" that records showed Krumback had on ten separate occasions been allowed to exceed his quarterly exposure limit. "I am appalled at what happened," said Morgan, who had worked for twenty-eight years as a top health officer at Oak Ridge National Laboratory. He commented that he would have shut down Oak Ridge if similar exposures had been shown there. He estimated the effective plutonium dose to Krumback's colon in the thousands of rems, and agreed with Dr. Stewart that the plutonium exposure was more than sufficient to cause Krumback's cancer.[99]

With the unexpected addition of testimony from Drs. Stewart and Morgan, Dow Chemical saw what had seemed like a routine suit--destined for denial--turn into a watershed battle. On June 3, 1981, the tide turned toward the nuclear workers. Colorado granted Florence Krumback a twenty-one-thousand-dollar settlement, which seemed bound to open the door for a whole backlog of suits like those of the Gabel family. The sum was a small fraction of the medical expenses from Leroy Krumback's illness. But Florence Krumback hoped her victory would help force the industry to make the changes in the radioactive workplace. "If it saves one life," she said, "then it will be worth it."[100]


93. Rapoport, Great American Bomb Machine, p. 24.

94. Ibid., p. 25.

95. Don Gabel, interview with film makers of Dark Circle: A Documentary on Nuclear Weapons and Nuclear Power, produced by the Independent Documentary Group (395 Elizabeth St., San Francisco, CA 94114; 1981) (hereafter cited as Dark Circle).

96. Citizens' Hearings.

97. Ibid.

98. Alice M. Stewart, testimony before the Colorado Workers Compensation Department hearings, Krumback v. Dow Chemical, February 1980.

99. Karl Z. Morgan, testimony before the Colorado Workers Compensation Department hearings, Krumback v. Dow Chemical, August 1980.

100. Pamela Avery, "Rocky Flats Cancer Death Blamed on Radiation," Rocky Mountain News, June 4, 1981, p. 4.

While the commercial reactor industry is undergoing a serious decline, well hidden from the public eye is the proposed massive expansion of nuclear weapons production. Insofar as military strategic policy serves as the vehicle of the nuclear arms race, the plants that make fissionable material, manufacture bomb components, and assemble them make up the engine. Because several of these weapons plants have reached the end of their productive cycle of thirty years, the federal government is already moving to commit the nation to another thirty years of large-scale nuclear weapons material production.


Next | ToC | Prev


back to Killing Our Own | radiation | rat haus | Index | Search